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Abstract

Maxwell’s equations are solved for a cylindrical waveguide con-
taining a magneto plasma with a prescribed dentity profile. A
complete set of orthogonal azimutal and radial modes, and their
dispersion relations is obtained. Power flux and surface current
are then used to define a power-equivalent R.F. plasma potential
and a characteristic wave impedance for each mode. The result is
applied to axisymmetric systems of plasma wave excitation con-
sisting of a sequency of gaps in the waveguide, connected to
circuits of any kind. The respective boundary value problems are
reduced to the case of a single gap with surface currents and power
equivalent plasma potentials prescribed at two locations left and
right from the gap. The Green’s function is obtained for that

case and used to set up an integral equation for the electric field
along a surface bounded by the gap. An approximate solution based
on Schwinger’s variational principle amounts to matching the .
admittances looking both ways through the gap. That gives three

by three admittance matrices, one for each mode, which relate the
surface currents and potentials at the prescribed locations and

at the gap. These mode-equivalent T-junctions are then used in con-
junction with Floquet’s theorem to synthesize the system of a

periodic array of gaps connected to an iterated circuit. The re-




sulting coupled mode equation for Floquet’s propagation constant
shows that efficient transfer of power from the circuit to the
plasma wave requires a close match of their phase velocities, and
- for broad band operation - also a close match of their group
velocities. These criteria lead to the design of a slow-wave
directional coupler, which is applicable in the appropriate fre-
quency regions.Sample calculations show that these requirements
are met by plasma waves in a frequency range between the lower-

hybrid frequency and the electron plasma frequency.

) invited paper presented at the
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1. Introduction

The theory of plasma wave excitation has found little attention so
far in the community of plasma physicists, although this problem is
of prime importance in R.F. plasma heating. A fameous exception re-
presents the excellent work of T.H. Stixl) on the excitation of
Alfvén- and ion-cyclotron waves by means of coils of finite size.
One can make an extensive search through the literature on plasma
physics before one can find such tangible results as coil-impedance
and plasma-loading, which are the basis for any engineering design

2)

procedures. The author’s own work in this field was largely re-
stricted to the case of plane parallel grids in an infinitly ex-
tended plasma. Since internal structures of a fragile nature can-
not be tolerated in fusion devices, alternative coupling schemes
must be found. The literature on microwave-high-power devices offers
a formidable source of ideas in that respect, along with powerful
analytical techniques to predict the performance of such devices.

It is quite amazing that little, if any, effort has been made so far
by plasma physicists to tap these resources. A step in that direction
must be taken eventually, at the latest when we have to exactly
specify our requirements for plasma heating to the manufacturer of
high-power R.F. equipment. In this paper we take two such steps. The
first by analyzing a basic coupling scheme which does not reguire
any parts suspended inside the plasma container, the second by pre-
senting the performance data in conventional engineering terms. The
latter is made possible by the methode of analysis, which represents
a sophisticated extension of the early work by the author 3,4,5,6)
on high-power microwave tube devices, here applied to basic plasma
physics.

The system analyzed in this paper consists of a cylindrical
waveguide, filled with a magneto plasma whose dielectric tensor
elements €) + €yxs €, can be specified along with any radial
density profile. 1In order to arrive at differential eguations
rather than integral equations, compare e.g. H. Derfler and F.
Leuterer 7), we use here the cold plasma approximation though
the effects of parallel temperature can be included without

essential difficulties. After Fourier analysis in axial direction we
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obtain in chapter 2 the complete set of azimutal and radial modes,
and show that the inter-mode Poynting flux is quasi diagonal in the
presence of small losses. Power flux and surface current are used
. to define a R.F;-potential and a characteristic wave impedance for
each mode. Together with the dispersion characteristics we thus ob-
tain a set of mode-equivalent transmission lines of standard
engineering type. The phenomenon of non-reciprocal propagation is
then excluded from this paper by restricting the subsequent con-
siderations to devices with azimutal symmetry. In chapter 3 we
consider a single gap in the waveguide connected to a radial trans-
‘mission line. To solve the inhomogeneous boundary conditions we
first generate a Green’s function by Fourier analyzing the electric
field adong the wall and subsequent residue calcdlation.- An

8)

match the admittances looking both ways through the gap, using a

application of. Schwinger’s variational principle then allows to
trial function for the axial electric field in the gap. The re-
sulting normal mode expansion contains amplitude factors whose
square is equal to the fraction of power fed into each mode. Ex-
pressions are then obtained for the load impedance of the gap and
the losses in the wall. In chapter 4 we first generalize this system
by specifying surface currents at two locations left and right of
the gap. To match the boundary conditions at these "virtual ter-
minals" we simply add a spectrum of standing waves to the amplitude
factors of chapter 2. That gives 3 x 3 "admittance matrices", one
for each mode, which determine the surface currents and potentials
at the virtual terminals as a function of these at the gap-input
terminals. These mode-equivalent T-junctions are then used in con-
junction with Floquet’s theorem to synthesize the system of a
periodic array of gaps connected to a space-periodic circuit. The
resulting dispersion relation for Floquet’s propagation constant
shows both, forward and backward wave interaction between circuit
and plasma waves. A one to one correspondence is then established
with the conventional microwave theory of directional couplers,
from which we can quote directly the properties a slow wave
directional coupler must have for the purposes of R.F. plasma
heating.
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2. Normal Modes and Transmission-Line Analogue

When Maxwell’s equations for a cylindrical magnetoplasma

: =4 2 pd ; 2 €L jex @)
Vx H = o.g.t VX,:: '—"-JC()Z(O "" g = _Je,‘ E'_L @) (l)
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one can eliminate the radial fields
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and obtains the following system of first order differential

equations describing the radial evolution of the Fourier com-
ponents:
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Here ¢ =

= rw/c, and K= ck/u the refractive index parallel to

the applied magnetic -field., This system has the form of Birkhoff

and Langer ’
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o Xw = (A, +2B,) X

=m = m -m (5.1)

Kz,'and boundary conditions

with eigenvalue A

XL(«) = X, () =0 f;:,:.o 9X )= 9 X, (p)e O (5.2)
at the metal wall, « = aw/c, and in the center of the plasma
respectivly. The latter condition excludes the two basic solutions
of Eq.(5.1) which one can show to be singular at the origin P = o.
The remaining two basic solutions serve to match the boundary con-
ditions as follows. Using a trial value of ., we start off compu- '
tation at the origin P = o with Taylor expansions

Xa' )= [ @ D], T c® Lo

/ -m =mW /

then continuewith a standard procedure for solving first order
systems of differential equations, such as Hamming’s. Simul-
taneously we calculate the determinant

(1) (2)
(A le ()‘Jf) xlw (% 9)
A, (8) = fiy, LA (@) (6)
Xam (/\)g) Xsm ()‘,f)

and check if Am(A,a) = o ? If not, a better ‘trial value A is pre-
dicted and the process is repeated until Am(x,a) = 0 comes true.
The resulting A = Ai is an eigenvglue and the corresponding eigen-
funqtion‘zhn(_g) is a simple linear combination of the two basic

solutions

Kom (M2) Koo (09)
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A hg) L va) X2 ey || of

=) 7.1)
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namely
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As an example we show in Fig.l the. dispersion characteristic,
Kinjw @) = L Xy (w) (7.3)

obtained for m = o radial modes of electromagnetic waves in a
cylindrical waveguide filled with a cold magneto plasma with a
Gaussian density profile. In the electrostatic limit, these waves are
known as Trievelpiece Gould wavesda). It is seen that phase and
group velocity become slower the more radial nodes of oscillations,
n, fit into the plasma. This agrees with Birkhoff and Langers 9)
general statement that [ | < | kmn+l" Since the matrices A and
i%lin Eq. (4) are non hermitian, the eigenvalues ‘un €an be positive
or negative in a loss-free plasma, corresponding to propagating
waves (kmn = real) or evanescent waves (kmn = imaginary) respec-
tively. When losses are introduced (‘L ¢ Eyxr €y complex) or when
the frequency w is taken to be complex as in Laplace analysis,

Am and Pm become complex, giving complex eigenvalues. Yet, the

corresponding eigenfunctions are orthogonal. This can be shown
from the adjoint system of equations:

~ X ~ )
%P.Zlm =-.‘2/m.‘(£'rn_+2'_‘§m) (B.1)

with boundary conditions
V2.,{%) = VHW Y f‘;’o 108)= 2),(6)=0, (8.2)

and from Green’s identity which follows from

(L) X0t V2 cg,xm) -
= (A ) Vi B X

d.N
o Ym




by integration:
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In the last step we have taken the boundary conditions Eqs. (8.2)

for Y i into account. Following Langer 1), the adjoint system

Egs. (8) has the same eigenvalues mn 25 the original system Egs.
(5). Thus, if A = mp is one such eigenvalue with eigenfunction
mp(j)), the left-hand-side of Eq. (9) vanishes by virtue of the
boundary conditions Eq. (5.2), which proofs the stated orthogonality:

o

bf_é/VMt' D - X dp = n#p (9.2)

“mp

The case n = p can be obtained in the limit A A i ? using Taylor
expansion with respect to A

* ~
Yimn (#) Ky 3 @) = j)’ i B X de (9.3)

A m — /

where we have used the conventional subscript-comma notation to
indicate partial derivative with respect to A:

X“'”)’\" (O() = [%' Xim ('x)o{)])\:/\m" = AWJA(O{)

This derivative is easily computed along with the basic solutions
due to the fact that X (1 a) = A (r,2), and serves in the nor-
malization of the elgenfunctlons as described further below. Also,
there is no need to solve the adjoint system eqgs.(8) explicitly,
because one can show by substitution, that it is equivalent to
the original system under the transformation
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(9.4)
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By means of this transformation we can write Egs. (9.2) and (9.3) in

the common form,
§ an (.P).Imn' Bm@)_]_?mp{f’)df': é\n-,o). (9:5)

where
'Vi

an(f) = z(hm (p) '_qu“(d)x‘m),\h("‘)] (9.6)
are the normalized eigenfunctions.

We now calculate the "mixed" Poynting flux in positive z-direction,

which in view of Eq (9.6) can be expressed in the form

2 EH = ?ﬂ j [ rmp ¢mn ¢m ﬁrmn—l r\dr

b &
@ X%, ) w)] j%n,ff”df)

(Xo71)
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*
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(lo.2)

Comparison with Eq. (9.5) shows, that due to the conjugate complex
quantities indicated by the superscript star, the off diagonal
elements n # p of Eq.(lo.l) do not vanish, except in the absence

of losses where all is real in Eq. (lo.2). The latter is true even
in the presence of evanescent waves, because only the real quantity

2

Km = *pn £ © is involved in that case. Our example shows that,
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contrary to popular believe, the orthogonality of eigenfunctions
and the diagonality of the mixed Poynting flux are two entirely
different things. However, when the losses are small, l%oll/h «£1,
one can show from Eqs.(9.5) that for m # p:

A
! Reﬂ.‘- S\dg Smnp-J ~ (‘IJ(OLL/UQ )2 &K 4

and therefore we can neglect for all practical purposes the ex-
change of power between different modes. Thus we write for future
reference the approximate "orthogonality condition"

oA 4 _
~% ~
J_Ym (p) dy =Jﬁmh(5>)-:7;n .§m@) —Rm,ff’) a/jm [m (1o0.3)

L o

and

2 R = 23 \/;j (£)° K.,

)‘:Jmn(d) X””)Anm)/ J'\"F S el

This result is related in a simple way to the important engineering
concept of wave impedance Zn if we request that

ZP = @ ‘2._* "-:2."%2”‘“({;

mup mp “mn mn Lo po) (11.1)
where
] " 2'-—. 6
Ly &= 2T aj] = &dc \/j=e
is the mean z-directed surface current, and e = i Z .y Ehe
mn mn ‘mn

voltage across a mode-equivalent transmission line with matched
termination. Equating the expressions Eq. (lo.4) and Eq.(11.1) then
gives the simple formula

Z,, = = o K, |qu(ot)]-2' (11.3)

h Z;F <.
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for the wave impedance. We also note for future reference that the

ratio
Lo /Km, = —Z,,: //\/,:: (11.4)

is strictlylreal.

In Fig.2 we show the result of a sample calculation representing
the mode impedance Zon for the electromagnetic Trievelpiece-Gould
waves of Fig.l. The frequency range corresponds to the limited
range in which we have been interested so far. To get an overview
of how the wave impedance varies in a wider frequency range we

also show in Fig.3 the analytic result

A
2 2 )
7 BN (&)pifwn_wz)z_
on i Eo 5 2
cup - W

obtained for electromagnetic Trievelpiece-Gould waves in a pipe
filled with homogeneous plasma at infinite magnetic field. This
graph clearly shows the characteristics of a band-rejection Fil-
ter,rwith cut-off frequencies at the plasma frequency e and
g = (mp2 + wnz)l/z, determined by the
cut-off frequencies wal = B c/a, Jo(pn) = o, of the empty pipe.
It is the lower pass-band, well above the lower hybrid frequency,

hybrid frequency,

which is of major interest to us in plasma heating.Both figures
show that the wave impedances are in a convenientlengineering
range. Nevertheless deviations from it will ‘occur in the load
impedances of the couplers, say at two locations along the plasma.
The effects due to the interference of incident and reflected
waves of one particular mode are then accurately described by the
standard transmission line equation:

. (n ' s ()Y
g ¢ ot {kmn - wosec €Ky | 6. 1)
(2)

l
l'hwEZ) J Zmu "COSU'-Z kmh ('ija { é",h Em"

1




= .=
(1)

where imn are the surface currents, and eméi) the corresponding
voltages at these locations i = 1, 2, spaced a distapce 1 apart.
The symmetry of the admittance matrix, Yméik) = Ymékl), in Eq. (13)
shows that the propagation of each mode is reciprocal, though the
mangeto plasma is known to be an optically active medium. As

42), who treated the dual case of ferrite-
loaded waveguides, one needs two modes, exp (+ jmg—j:zk+mn), to ob-

tain polarization; with Faraday rotation due to kmn(w)'# Emn(w).

pointed out by H. Gamo

Both ingredients are needed in order to build a non-reciprocal
device such as a unidirectional coupler. Though non-reciprocal pro-
pagation can have most important applications in R.F.-plasma
heating, we defer the treatment of this subject to a future pu- -
blication.

In the following sections we will be concerned exclusively with
devices designed to excite azimutally symmetric modes, m = o. All
we need in this task are the mode impedance, Zon(m), and the
disPersion functions, kon(w), obtained in this section. We there-
fore shall suppress hence forth the subscript m = o, with the
undé:standing that the remaining subscript, n, counts the radial
nodes of oscillation in the plasma. '
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3. Gap Excitation of Plasma Waves

Consider a magneto-plasma contained in a metal pipe with a slit,
. and a radial transmission line connected to it, as shown in Fig.4.
When a TMO—wave is lounged by the generator connected to the ra-

dial transmission line, we have Eg(z,r) = o for r 2 a. Then any

i

distribution of the axial field in the gap, Ez(a,z) = E(z),
uniquely determines the other components of the electromagnetic
field throughout the plasma and the radial transmission line.
However, there is only one correct distribution of E(z) which
allows to match the tangential magnetic fields from both sides of
the gap, Hg(a+, z) = Hg(é—, z). This gives an integral equation
which we propose to set up, in order to extract from it the per-

formance data of the gap coupler as a plasma heating device.

Using Fourier analysis in axial direction and the radial wave
functions defined by Egs.(4), (5), and (7.1) we obtain the following
field distribution valid throughout the plasma region:

-1 kz
E,(rz) = zng!k X8l Erpe™
Y 1

. : p -jk2
1 jdk Xz()‘xf) (_JI(_c_)E[k)EJ
ZI-I- XI()‘)O() w

s
=
=
.04

1

Sk
N (IR N

20w 02 Xy (4%) (13)
- ~gkz
Eplne) = S ?zxdk Xaho) E(k) e

2T 3 X| (J'\id)

—yle#

(5"]% He(rR) Sdk Ky (ug) Q(k) e
Go l fxl(’\fx) |

E,(rz) = -—c-— 9 jd[( & X3 (Ag)+ Xylhg) E“(k) e—‘Jki
r | S)§1 X}(%)d)

e o R Kethis) = D e
fo | . )< (k) €

B
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Note that we have replaced any odd factor k in the integrand by
differentiation with respect to z. This trick helps to keep track
of the proper signs arising in the final answer for waves which
travel in opposit direction. Oyr ansatz evidently matches the
prescribed -field distribution.Ez(a,z) = E(z), as well as the
boundary condition Eg(a,z) = 0, which is satisfied identically by
.the very definition of X3(1,3 ) in Eq. (7.1). We now introduce the_
Green’s function

; _i k2
g(r)%):: 2-’3?'(2(_0‘1.?}6" dik
= i Xiddpd »
- o f X e (9 o nlzl (14.1)
E_C =l Xb)llﬂ(o‘) ’<l’l

which we have evaluated by residue calculation at the poles £ kn'
Eg.(7.3), of the integrand. In this context it was necessary to
remember that the steady state, w = w_, is obtained from Laplace

r
analysis in the limit, w = w_ - jlel, |el-» o, so that the poles

p kn are moved slightly off ihe real k axis as shown in Fig.5.

This procedure works also in the perfectly loss free case. Now

the displaced contours of integration shown in Fig.5 are uniquely
determined by the convergence of the exponential factor, exp(-jkz),
in the integrand. By taking the residues in the sens indicated,

one recovers the result stated inEq. (14.1) We now introduce the
normalized eigenfunctions, Eq.(9.6), then thg wave impedance as
defined in Eq. (11.3), which gives ‘ '

A
:):(_19_7.). = R, ) Rp@)=R (5L _(‘_(")Q(Kh)

XI,/\r\ (d) ET .EO —Z_;"

Ve

and brings the Green’s function Eq.(14.1l) into the form

o ~ok, I
? (rylzl) = Z Im () e (14.2)
S n=1 Z JZH -

where the radial wave function




= LB =
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‘Ih(f) = J% g’) ! 1(” an (¢) (14.3)

has been introduced as a short-hand notation. In applying the
theorem of convolution to the Egs. (13),

il
o

A A
L[ G m e a = {8 eemds

we are led to define the amplitude factor

2 + o0 ‘_,‘(h l?"l "
U,z = 2 :/_—Z j e . E(S]di [\/A]/ (15)
2N L,

-

and obtain the electromagnetic field components in their final
form:

E tre) = 2 X (9 Unte)

lh

Hy (re) = (%‘;)Vz 2 X060 & 2 Ut
Eg (r#)= - f J—-:,L,,,@)gu & Unf) e
Hy(re)= E_;azgiI%(g)uhm

| Er (r2)= - f e le X, Gt J\Zh(f}]c%%z U, &)

Hp(a)s \/E% f -? s xsn(f) U, (z)

This solution would be complete, where it not for the electric
field in the gap, E(z), which we do not know. To find it we must
solve Maxwell’s equations for r 2 a, a job we would like to leave

up to the microwave engincer. However, we can anticipate his answer,
which has the form
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+df2
Hp (atz) = f \G?’*‘»f) £ ) dg (17.1)
. “dfy

where §+(z,§) = §+(g,z) is a symmetric Green’s function, in general
complex and therefore non hermitian like ouxrs, G.(zﬂg) = j(co//uo)]‘./2
G4(a—, lz—gl). Matching his magnetic field to ours, Hg(a—,z), gives
the required integral equation for the electric field, E(z), in the

gap

+a/2

F ) = f [ g-(i,j)- 6 e ] E-l_f.]a{f =0 (17.2)
g

We now use an argument due to J. Schwingerg) which dispenses us,
under certain conditions, from the job of actually finding solutions
of this integral equation. The argument is based on the fact that
we are interested in the power flow across the gap, rather than in
the electric field itself. In other words, if we could get a good
match of the admittances looking both ways through the gap, we

could not care less, if that was obtained with a not so good so-
lution of the integral equation, Eq.(17.2). To define these
admittances we use Poynting’s theorem

+dh .
* ¥* x ! X (18.1)
2 Er = -‘Z\T(JQJ E (2) H#(Qi-)?)df = € 24 = G Gy‘”‘(w)
—dA
+dh

2P¥ _ ‘23a‘( E % H,{,(a-)?)a{-z: E*Z_' = ey W),
-4, T

(1842)

and an r.f. potential, e [Volt], such that.
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e= --{i/z E('})di‘, E(2)= -eg(2) ; 9(93'-'0.(312% (18.3)

The gap-factor g(z) [cm—lj, introduced here can be loocked upon as
the field distribution due to an r.f. potential of 1 volt across
the gap. The application of Schwinger’s argument then proceeds as
follows. A perfect match would require a gap factor, g(z), such

that the sum of the two admittances, i.e.

Yy = Xr+zr = H 3*(2)§ () q(5) da 4

vanishes. Note g Q'- G+. Now consider a gap factor go(z) with

deviation Sg(z) go(z)-g(z) from the exact one. That results in-

to a mismatch, 7
Jy = ffsz)?(?)f)jq}dfdj 4 ﬂg*(3)§(?lj}{?q}d}%f ;

the first term of which vanishes because, g = E/e is a solution

of Eq.(17.2), while the last one does not, unless the Green’s
function is hermitian §(§,z) = §(z,¢ ) ., or g(z) is real. The
first condition can not be met in our case. However, the last con-
dition is satisfied when the fields in the gap region itself be-
have quasistationary, an assumption we are certainly entitled to
make. Thus, instead of solving Eq. (19) rigorously, we can guess a
trial field which, when fairly close to the correct form, g(z),
will give only errors of the second order in qalculations of the

power flow. For example we can use the "gap factor"

[ 2 [i+y) _ 24 Y-1/2
g (2) = E‘TEW) [1- (22 4) ] (19.1)

obtained by conformal mapping of the electrostatic field in the
vicinity .of coners with angle 8 = 4r » /(1 +2y ). We also state
here its lourier transform, commonly called "gap-modulation fac-

tor" in microwave tube engineering,
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é\(k) = MOay) J, (kd/z) (kcl/lf)_y (19.2)

as well as the transform of the "gap-correlation factor"

GG)= Jﬂ(f)ﬂ(gi%)ds o—> G?(&)-- %(k)é\(-k)J (19.3)

and its Hilbert transform:

A A / 7 %
Hek) = 4 Jf Gk 2 ™t .
,m k'- K _ Ji P(V+§‘)‘P(2v+§3)
d . 2 (19.4)
1‘.2_ zF [l) Hv.%)}fv)%ﬂv;_(l‘%_d)_]

We are now ready to evaluate the performance of the gap coupler.
Starting with the surface current,

7 = 2% a4 (e, 2) = Z Z{,,fﬂ//zn ’ (20.1)

obtained from Egs. (16.4) and (11.3), we calculate the amplitude
factor, Eqg.(15), in its explicite form

deo

=ik, 12-51
U, z) = f\[z J e g(jldg (20.2)
‘-'l< ¥ 4 +
= L@y o ie)  ed
?—ﬁn % h) " ' & (20.3)
" _ Jl‘h'?- 2, ;
- e .3(- kn ) € = U, (2) 2¢-¢

2\zZ,

(20.4)
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We then can estimate the losses in the pipe containing the plasma
as follows '

©0 . 2 Z/&
L = '%_RSZ 25. Z;, Zlm*d% = ‘2'{_'3 Z j , ('J:_' I de
n=' df s Vin

(20.5)

Ak ld o Tmkalé 0
e ) EI h —>—L2_ R« ﬂdﬁf)
| Tmkn| 4wl ayz o] 4

UM(O)

.|R ﬁ

2

where, Rs = Real (jm/uo/e“)l/z, is the conventional surface re-
sistance due to the skin depth penetration of the waves into the
metal, and wfn the length of the system. Note that the last step,
4 o0 ., is not permissible in a loss free plasma where Im k= o,

It is obvious from these formulae that the wall losses decrea”e as

the losses in the plasma 1ncrease.’

Next we calculate the admittance Eq. (18.2) of the plasma as seen
' through thegap. The Hg—component in that. expression has already
been calculated in general terms, Eq. (20.l1), so that we have

oQ

! & -
Yr = f!! Z: \[—ij 9(2)_%’&)4% ! (21.1)

and when U, assumes the special form, Egs.(20.2), we get
8 3o ; gk |25l

\YAR - ff {26y G(21405) € 21.2

Lr %,22., L3479 e

The substitution Z = ¢ - x produces the gap correlation factor al-
ready defined in Eq. (19.3), then
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" 5, L [ ™ o)

(21..3])

- E 1 [qf\_(kh) +q+(-u]
2

A
where the "Laplace transforms" G+ of G(x) are identical with the
A
positive and negative "frequency parts" of G(k):

A A
Qs (k)= 4 [ Gz H00] —_—

A A
Because G(k) is an even function of k, its Hilbert transform H(k)
is odd, so that we obtain the final result

Ly W) = }_L_ %| [QA("‘H*J HA(‘%’] /Z,,, (21.5)

To uncover the physical contents of this formula, we remember that
G(k) = q(k)g(-k), Eg:i(19.3); and introduce from Eq. (20.2) and Eq.
(20.3) the wave amplitudes, U- (o) /e, referred back to the midplane
of the gap. The resulting expre551on

0o 4 i
Y 1o)[2 T 4 () /27, |
r e
‘h

e

clearly identifies the real part of the gap admittance as an in-

verse "radiation resistance" due to the excited plasma waves. Thus
the total R.F. power injected into the device is given by

. » S
. (L L L = eal 4 N
P = Res > el Rea 2€6 Zr‘ (w) (21.6)
and the plasma heating efficiency can now be calculated from

¥ = 1o(i-L/p) % (21.7)
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In Fig.6 we show a sample calculation of the gap impedance Z(Q) =
I/Yﬂr(m) due to a spectrum of the electromagnetic Trievelpiece-
Gould waves of Fig.l. Its real part, i.e. the "radiation resistance",
smoothly follows the trend of the wave impedance shown earlier in
Fig.2. This is due to a proper choice, {knd l((Zn, of the gap width,
which enters the calculation via the gap-modulation factor: Eq. (19.2)
.with ¥ = 1/2 in this graph. Obviously the condition |k d |« 1Tcan
not be satisfied for all the higher order modes, and certainly not
near the electron plasma frequency wpe' where kn —» o« , The gap
modulation factor becomes oscillatory there, producing wiggles on
the impedance characteristics. The onset of this phenomenon can be
seen at the high frequency end of our graph. The reactive part of
the gap-impedance is inductive and, compared with the real part,
quite small. The latter is again due to a proper choice of the gap
modulation factor, [kndl <« 2x, as can be seen from an inspection

of Eg.(19.4). The smooth variation with frequency of both, the re-
sistive and reactive part of the gap impedance are a delight to the
microwave engineer confronted with the job of matching the gap-
coupler to an R.F. generator; This should be contrasted with the
nightmare of matching a generator to resonant peaks in cavity ab-
sorption. To maintain the broad band characteristics of the gap
coupler in such a system, for example, in a toroidal-:device, we

must be sure that the plasma waves are absorbed before they get

once around. If this can be obtained depends entirely on the damping,
hnkn, which will be due to parametric decay of the waves, provided
the frequency is high enough. Even if that.scheme works in principle
we are confronted with another difficulty which arises from the

fact that it is well neigh impossible to feed lo to 20 megawatts

. of power, as needed in R.F. heating of fusion plasmas, through a
single parthole. We are thus confrented with the interaction of
many coupling devices, the fundamentals of which will be discussed
in the following chapter. '
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4. Slow-Wave Excitation of Plasma Waves

In the previous chapter we solved inhomogeneous boundary conditions
. at the wall of a plasma loaded waveguide, excluding reflexions from
the ends. Thus, outside the gap region we were confronted only with
bropagating waves. If we want to study the interaction of many
coupling devices, we also must allow for standing waves, in all the
spaces inbetween. This is in particular true if we want to put the
plasma waves to work by constructive interference with circuit waves,
which necessarily must be coupled to the plasma in some space
periodic fashion. In Fig.7 we show how such a wave-directional
coupler may look like. It uses a Millman line fed from a tapered-
ridge waveguide with a periodic array of slits to do the coupling
with the plasma waves. The purpose of the Millman line is to match
the speced of the circuit waves to that of the plasma waves for
maximum energy transfer, as we shall see later. Although such a
distributed coupling scheme may be the answer to many problems of
ﬁower handling capabability in R.F. plasma heating, we are not yet
in a position to predict the performance of a device of that com-
plexity. As a first step in that direction we propose to treat a
model with added symmetry, as shown in Fig.8. It uses a periodic
array of gaps in a cylindrical plasma waveguide coupled to an
iterated circuit, the specifications of which are dictated by the
plasma waves supposed to do the heating. It is the objective of
this .chapter to supply a general formalism by which the missing
specifications can be obtained, using the model of Fig.8 as a

guidline.

As a first step towards a book keeping of the injected and reflected
waves between the gaps:thig.B, let us specify surface currents
left and right from a selected gap, say

L(z) > <2 at 7. -
. . (22)
702y  — 12 3 =

at 2

Obviously, this "choice" must be made selfconsistent with the rest
of the system, a task which is easily acomplished later when we
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actually evaluate the performance of the system. To match the

boundary conditions at these two "virtual terminals", we must add

to the propagating waves of Egs.(16), a spectrum of standing waves
which satisfies the homogeneous boundary conditions of an unobstracted
‘wall. Since these are proportional to the radial eigenfunctions,

e.g. in the form ggqqqn of Eq.(14.3), all we have to do is to re-
place in Eqgs. (16) the amplitude factor Uh(z) defined in Eq. (15. )

by

- P"z- 6, e et (23.1)

W’f\(l): an €

The modified surface currents in(z) are then obtained from Eq. (20.1)
with W, replacing U : '

2.,, () = W.,, /»/-Z,, €23.2)

We must caution in this context, not to use Eq. (23.2) for calcula-
ting the power flow from Eq. (11.1), because that expression does
not discriminate between power flowing to the left and right
respectively. We therefore calculate the "mixed" Poynting-flux
directly from Egs.(16), using Eq. (l0.3), which give the remarkably
simple result: i ;

*
IWh

[ enl

Due to the orthogonality of this expression we can treat from now

0 5
Pnpm_ 1

e~

W d,, (24.1)

o/

2

on each mode individually:

3 ¥* ; +#
: 1 Wy () Y o ¥ - ) Wi ) e (1
Ph (-E) =z 2 _-LT}_ 5—; wh(!- ) = _2-. 29«1 (16 z) = ‘/.Z_* n ) (24.2)

H

We have substituted the surface current Eq.(23.2) into this ex-
pression in order to define the r.f. plasma potential en(z). A

comparison of the second and last term in this expression gives
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= X =

, Z"-l‘ . ‘ e i .
Cn(2) = JYin B%Wh: J _ZL )_5 Wh= Ji}Z W, , (25.1)

where the last step is justified in Eq. (11.4).When we write Egs.
(23), and Eq. (25.1) in their explicite form

(25.2)
‘ - il jlenz )
e \Z, dw. [, 48,7 v 42UV,
, -k
2,(t)= the)/fZ s [ahe" A gheﬂ("? mnmJ/JZ
{(25.3)

~we see that the plasma mode potentials e, and associated surface
currents in are uniquely determined by the wave amplitudes, a ., bn'
U%, and vica-versa. This set of equations therefore serves the

same purpose as in microwave engineering, where it is used to ba-

lance the "incident" waves, a s and "reflected" waves, bn' looking

into a given terminal, for obtaining voltage-current relationships,

)

in Eqs.(25) allows in addition a distributed source or sink of

. - 13 . .
compare e.g. Montgomery, Dicke and Purcell.’ Our contribution Uh(z)

power, which is properly balanced by Egs.(24). These equations can
. therefore be looked upon as an extended Microwave Power Theorem.

We shall now give a demonstration of the great advantages which
can be drawn from this theorem in matching the boundary conditions
at the "virtual terminals" proposed above. '
Starting with the region outside the gap |z| 7 d/2, we can use Eq.
(20.3) and Eq. (20.4) for Un(z) to obtain

L %u“ sqn(z) Unlz) | 1rdh
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which puts Egs. (25) into the form

en(2) = . sz [ On e-‘) l(h? A gh e Jk"‘% +§sn (2) uhﬁ')] (26.1)
m : 11, Y2
' l *J Wi J' W
el = = a,e - e + U, ]
ZH ( ) \/’Zm [ h @h h 26.2)

We now must evaluate the effect of the standing waves on the gap
admittance. Equation (21.1) applies in this case with Wn replacing

Un’ thus giving the modified gap admittance due to the n-th mode

'lj = ‘/% J g () W,k ds (26.3)
n e 7

When Wn is substituted herein from Eqg. (23.1) we obtain the modified
surface current injected by the gap:

: ) (3) A A (3)
1,7 =Y e - FLadth- 450 T 1y e (27.1)

where Y is the contribution of the n-th mode to the gap impedance
as already given in Eqg.(21.5). Also note that we have introduced

the superscript (3) to distinguish the gap current and potentials

from those at the virtual terminals. The latter can now be written

down, using Egs. (26), and Egs.(20), at z = —ll, and 12 respectively:

[ x(”‘f -'l<' e'i
T A ) R L e A T it T (27.2)

s ke & -jl,
214()\/?}1 = @h eJ 4 ,*— 6'h QJ El*uhfﬂ

(27.3)

]
e
s
D
S5,
n
=

- ikl
Z‘-’-‘- gz en(z“/\ffy\ e J ¢ -}

(27.4)
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] -1le ¢ J"<u€z (1)

= Zh )ﬁh = &M ﬁ‘j h 2‘- @P‘I e 4 uh (27.5)
where the minus sign in front of iéz) takes care of the engineering
convention of counting currents positive when looking into the
terminal, and

A “‘I‘ el ( ) 'f<,,€

We have thus obtained a set of 5 equations, Egs. (27), for a total

of 8 variables, namely the mode amplitudes a . b n* -3 potentials eéi)
and 3 currents 1&1). We can therefore eliminate the wave amplitudes
2, bn to obtain 3 linear relations between the applied potentials
and currents. The process of elimination is tedious but straight
forward. We therefore give here immediately the resulting admittance

matrix:
(, J’ r.f) : (3 (3)
ﬁ;%j L~ fJZ,B 9 e, =e (28.1)
where
(tu 62,2y :
- Zj i coty ky (€ fg}/dzn | (28.2)

(‘2) Ij%ﬂ W ebsie L, (6+6,)/ L,

[28.3)

describe the transmission of the n-th mode between the virtual ter-
minals in an unobstructed pipe, while

%nﬁﬁ): g (31) fﬂc (k) wsk, € + ﬁs(k ) sin k}j]/;m Eofl14)jZe (28.4)

Yy, [3@ Jonkby- G (o) sink ] /s, (16)i2 6. 5)
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(32) (43), (43) oo le (040) A 4
Y, T2 jL Yty sinkallnt U R (AN , (28.6)
describe the excitation of that mode via the gap. We also note that

g, and g, are cosine- and sine transformations comming from even-
and odd-parts of the gap factor respectively, so that

q(8) =414k, G- Gl § (k) } ﬁﬂ()_, Aty e i, (k)

The physical interpretation of these formulae is as follows: Closing
the gap, e(3 = 0, gives the transmission line Egs. (12), already
described in chapter 2. We now would like to recover the results

of chapter 3. We run immediately into trouble in this task, because
the admittances, Egs.(28), are all purely reactive for real Ko
while the gap admittance, Eq.(21.5), of chapter 3 has a resistive
part, even when ka is real. How can we recouncile the two? Suppose

e ) o, and

n

let us take the virtual terminals to infinity, 1, =1, =00 ., In

this process we express the trigonometric functions in Egs. (28) in

there are small losses in the system, so that —Imkn

terms of cotg knl, and use the fact that cotg knl =:j for. Jd ~s02 ;
however, small the loss e mafibe. gn that limit tgg Y matrix be-
comes diagonal with elements Y oi= Yi = l/zn, and Yn = Yn' which
in fact is the contribution of the n-th mode to the gap impedance
we have obtained in chapter 3, Eq. (21.5). This demonstration in-
dicates how imporﬁant internal reflexidns may affect the electri-
cal characteristics and performance of a heating scheme,'when the
losses in the plasma are too small. Satisfied that our admittance

. matrix can answer quite subtile questions posed by theory, we go
into the other extreme by giving a demonstration of its engineering

value. For this purpose we define an aberration distance gn
) :
fg (k) = qs (k) /G, (k) | (29.1)

which measures the odd part of the gap field, and therefore will be
quite small in any symmetrical device. By means of this distance we
can express the matrix elements Eq. (28.4) and Eq. (28.5) in the form
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Y, o wy cos ke (6,5 1 32w hou (646) (20.2)
YUn 2w, ok, (€ +40) /3Zn #w ko (G4 t2) (29.3)

W, = Glk) + G5 (k) = G (k) (29.4

Exactly the same matrix elements can be obtained by a straight for-
ward engineering calculation of the circuit shown in Fig.9, pro-

vided we take 12- grﬂ

transmission lines, W, for the turn ratio of the input transformer,

11 + & n’ for the sections of homogeneous

and

Bn = ﬁ(’fnJ/ZZn-f [I-/\‘\c(h}# H‘S(k.,)]/zz,, (29.5)

for the shunt admittance across the input terminals. In microwave
engineering such a device is known as a T-junction. With the interpre-
tation of its elements given here, it describes the exitation, pro-
pagation and damping of the n-th mode in minute detail. We ampli-
fied that statement because the description is exact if we use a
rigorous solution of the integral Eq.(17.2) rather than a trial so-
lution g(z) to calculate the various gap factors in Egs. (29). We
therefore shall refer henceforth to the device shown in Fig.9 as
the mode-equivalent Tn-iunction. As in conventional microwave

engineering, it turns out to be the basic unit for analyzing a
great variety of devices. A demcnstration of this idea will now be
given, using the example of the slow-wave directional coupler
shown in Fig.8. )

We start by taking identical Tn-junctions with fl = fz = f/z, each
corresponding to a unit cell in Fig.8. We can join these Tn-junctions
at the cross bars, and obtain the mode-equivalent chains shown in
Fig.lo. Note that due to the orthogonality condition Eq. (24.1)

there is no other way of doing this., As in any space periodic

system, we now invoke Floquets theorem, which requires a uniform
phase shift 2 of all the physical quantities along the chain, e.q.
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ehﬁ) - ehﬂ) - J ’ ?er} A hr’Je J (30.1)

By taking these relations into the circuit equations, Egs.(28.1), we
can calculate the admittance looking into any gap along the chain:

(43 . (23 - (, 3) (2, 3) Joel
?,.(:) - (3||3J I ([jh, -}gh, e }( ) (30.2)

E?s)

)
ﬁgS?
A
&5
3
'
Nl

lj“’” + ?{jh“'z’ cos(xt)

n

When we express the admittance elements in terms of the gap factors,
Egs. (28), this equation assumes the simple form,

i B

(30.3)

. sin £, € | ] )

. bk, -l

S
Y - J[22; +

ol

where we have introduced the superscript minus to distinguish plasma
quantities from circuit quantities, which now must be considered.
In fact we can treat Maxwell’s equations in vacuum after the model
we used in this paper, with answers that formally loock alike. We
thus can construct mode equivalent chains of T-junctions for circuit
waves which must yield a gap admittance similar in form to ours:

—m

LE. Wi 7 Cos k1 €-cos el

[ | Hh 4 ' G: Sﬁd’(: f ] (30.4)

We now connect all-the chains in parallel at their base terminals
as indicated in Fig.lo. That amounts to matching the admittances

y'zuo, oyt

looking both ways through the gap. The resultlng coupled mode
equation.
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-+
i, In sin k, 4 H q,, Sih Kh }
H y Z‘j{ 224 + _Z-';" C.OS L’ {’rasa'f * 22' Zn CﬂSk b-o0sal

hll (31-1)
t
finally determines Floquet’s propagation constant as a function of

frequency, 2 (w). It is therefore a dispersion relation which de-
termines the propagation of waves along the coupled structures. To
get an overview of the solutions of Eq.(31.1), we observe that its
lefthand side switches sign near resonance, cosa { ~ cosk £ -
while the other terms vary slowly as a function of frequency. Mode
coupllng thus occurs only where two denominators nearly vanish
simultaneoqsly, say where

cos € =~ cos 4 € = cosk, 4/

That nearly requires coincidence of two wavenumbers, cne due to a
plasma wave, and one due to a c1rcu1t wave or a space harmonic

there of

;P /\/n-[w)m ST L':-(w)'f 2277/'8 j 2=l'hifg.—er

(31.2)

The situation is illustrated in Fig.ll, where we have plotted the
respective wave numbers as a function of frequency. The requested
coincidence evidently arises at the points of intersection of the
two characteristics. To investigate the mode coupling near such a
point, (wX ;B ), we apply the well known partial-fraction expansion,

PR

Sﬁ1th & g I
sk, b-cor € 4 ®-k,-meip € o+ & -mal/p ;) (31.3)

= _ oo
Me-00 m

= too

in Eq.(31.1), then compile all the non-resonant terms into one
slowly varying function, A (w, 22 ),-whicﬁ brings Eq. (31.1) into
the simple form:
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Awe) t GP/Z::{ + G"-/_Z" £ =) (38
- (tlk,+920/t) -k,

This result is rigorous so far. We now take the vicinity of the
resonance, Eq.(31.2), into account, by evaluating the slowly
varying coefficients in Eq. (31.4) at the point of coincidence un-
der consideration, viz., '

ot Gl e GLe Y]
. Z;.(WK)A(Wka) ) Zh'(w“)A(w“,lf.)

(32 :1)

Equation (31.4) then becomes a simple quadratic for Floguet’s pro-
pagation constant with solutions

% - (Lp) & f(ma)s OO e

2
where we have used the abbreviations,

€, = A, (w)r C /¢ , %= i](r*(w)+z Zﬂ’/gt /4 ,(32.3)

and the & signs in front of the square root are uncorrelated with
the others. The interpretation of that result is as follows. The sum
total of non-resonant terms, ﬁk(mx, kx), in Egs.(32.1) are usually
quite large so that the coefficients CT are small. We therefore find
Floquet’s propagation constants, &= %,, and ¥ ~ 2, , shifted from
these of the uncoupled modes by small amounts, C /£ and tc+/£.
respectively, except extremly close to-resonance, where

An 2+ /xcte ) afeae,—{il/ic*’C'

The nature of the coupling therefore depends on the sign under the

square-root which, following Eq.(32.3), is positive in case of for-
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ward wave interaction, and negativ in case of backward wave inter-
action. The latter gives complex values for & resulting into a
range of evanescent_waveshqygich have been studied extensively,
among others by the author in the general context of his wave sta-
bility criteria. Fortunately stabiiity is not an issue here, although
the frequency bands of evanescent waves are of some concern. TwoO
such bands are clearly evident in Fig.ll, around ka =~ 6.8, and

ka =~ 7.7, respectively. We have greatly exaggerated the frequency
shifts in that figure in order to clearly show the principles in-
volved. The plasma wave dispersion has been taken over from Fig.l,
while the dispersion characteristics of the circuit wave and space
harmonics, Eq.(31.2) represents a sketch aimed at obtaining broad-
band interaction with the lowest order radial mode, kon(m), of the
plasma waves. This is not quite an arbitrary procedure but a strict
requirement in order to obtain maximum transfer of power from the
circuit wave to the plasma wave. We can proof this statement without
further elahoratiohs, because we have established in Eqg.(32.2) a one
to one correspondence with the conventional microwave theory of

directional couplers. We therefore can quote by comparison, e.g.
18)

’

with the results presented in the excellent book by W.H. Louisell
that the maximum fraction of power transferred from the circuit
wave to a codirectional plasma wave is given by

z ;
F, = 1-'+'A .. BB _‘I;(af,,l—ac;j) Vs . (33.1)

That occurs at a distance - '
L = % {7-/1/ o (33.2)

from the point of injection, where as an evanescent plasma wave
only reaches that far, and feeds a fraction

2 [T n

S inh Ivi-4
e : |
2 (33.3)

b IVimg -4

of the injected power back towards the input terminals. For a per-

fect match, A 22 o, that may amount up to. 84 % of the input power,
which is clearly an undesirable feature. Fortunately the frequency
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ranges of evanescent waves are usually very narrow band, so that

one may be able to avoid them in practice. All we have to do then

is to closely match the circuit’s phase and group velocity to that
of the desired plasma wave, in as wide as possible a frequency range;
A = o. That will make the transfer of power complete, Fi =1, in a
distance L, so that the circuit can be interrupted there. We can
calculate the required distance L from our formulae once the circuit
is designed after the specifications worked out here. The resulting
device is expected to distribute the impact of power over a con-
siderable area, with a very frequency insensitive load impedance
offered to the generator. Both aspects are of prime importance in
view of the very high power levels needed eventaully in the business
of igniting a fusion reactor.
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Summary and Conclusions

It was one objective of this paper to give a demonstration of how

. the powerful analytic techniques of microwave electronics can be
applied to basic plasma physics, in order to obtain the engineering
data needed in R.F. plasma heating. This is exemplified by the gap
impedance of chapter 3, and the synthesis of a slow-wave directional
coupler in chapter 4. The latter is but one of the possible appli-
cations of the mode-equivalent T-junction we have introduced in
chapter 4. We could use it for example as it stands to evaluate

. the performance of a phased array of oscillators connected to
several adjacent gaps, a system which has been seriously proposed
for R.F. plasma heating. An arrangement which has much more appeal
to us consists of a periodic array of gaps fed by a distributed
amplifier. It also could be evaluated right away by the techniques
offered in this paper. The fact that we have restricted our sample
calculations to the frequency range between the lower-hybrid fre-
éuency and the electron plasma frequency does not imply any re-
striction of our work to that range. In fact we can handle any
hybrid layers in chapter 2, which gives the characterisitc wave
impedance and dispersion characteristics. Thats all what is needed
in the engineering formulae presented in the subsequent chapters.
However, we do need an extension of the work presented in chapters
3 and 4 to cases with azimuthal variation, so that we can treat the
coupling devices in a perfectly realistic fashion. In this task we
will have to solve the tough prcblem of non-reciprocal propagation,
which in itself can lead to an interesting device, namely a uni-
directional coupler. Another extension of this work which is of
extrem importance in R.F. plasma heating would be the inclusion of
nonlinear processes. We,are-quite confident that the type of
analysis presented in this paper offers a head start in that
direction, because it is the parametfic coupling of distributed
circuits where it all started from in the first place.
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Fig.l Electromagnetic wave dispersion in cylindircal waveguide
filled with cold magneto plasma
Parameters: azimutal mode numbers m = O

radial mode numbers n=1, 2, 3
2 2 _ = =
c:.-p(o)/mc = 0.8;2 awc/c = 5; K_ = ckz/w

dashed lines: constant density
solid lines: Gaussian density profile

n(r) = n(o) - exp - (2r/’a)2
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Fig.2 Characteristic mode impedance for radial modes in units of
free-space impedance Z_.
. . o ~ 1/2
Parameters as in Fiqg.l, Zo= (/uo/:o) = 377 Ohm




- 40 -

zon

0.4

03r

03
02

01
0.1 o 0]

0.2

I
-~
AY
\

- 01 [y .

- 0.2i

-03i-

- 0.4i

Fig.3 Characteristic wave impedance for radial modes in zylindri-
cal plasma wave guide at infinite magnetic field.

Parameters: azimutal mode numbers m = o
radial mode numbers n=1, 2, 3

cold plasma at constant density

n=2.10t2 cm-3, radius a = 2 cm
so0lid lines: resistive part of wave impedance
dashed lines: reactive part of wave impedance
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From R.F. Generator

Fig.4 R.F. gap coupler

E(z) = -eg(z) gap-fiéld z-component

e = gap potential .

in = gap current fed into n-th radial mode
in(z) = surface current due to n-th mode

en(z) = R.F. power equivalent "plasma potential” due to
n-th radial mode
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when z<0

Rek

when z>0

Fig.5 Complex wavenumber plane with displaced contours of
integration used in residue calculation of Eq. (14.1)
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Gap~input impedance due to first three radial modes in
zylindrical plasma waveguide, in units of free-space im-

pedance, Z, = 377 Ohm.
Gap width/radius = d/a: a) 0.2, b) 0.5, ¢) 1.0
Parameters as in Fig.l, with Gaussian density profile

solid line: resistive part of impedance
dashed line: reactive part of impedance
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Fig.7 Sketch of proposed slow-wave directional coupler
' Millman-line delays electromagnetic wave to match phase and
group velocity with these of a plasma wave for maximum power

transfer in a broad frequency band.
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Circuit-chain of T-junctions

79 \ O Lo ”
«— from R.F
7 el O -0 Generator
1
l (Ml t Circuit - admittance
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A7, : 7777 } 77 >
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I
‘ I pe—d—of |
| I I
ex-l, z=0 z= |, Location of

virtual Terminals

Coaxial model of slow-wave directional coupler,

Chain of T-junction represents circuit analogue of delay
line to match phase and group velocity of electromagnetic

waves with that of plasma waves.

i (i)
n

(i)

n

surface current of n-th mode

R.F. power-equivalent "plasma-potential" of
n-th mode

Superscript (i), location of virtual terminal-pairs where
quantity is measured.
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- Fig.9 Mode-equivalent-Tn—junction
W o= ‘turn ratio of input transformers= Square of Fourier
transform of gap-field
B, = input shunt admittance = Hilbert transform of wn/
wave impedance z,
%1 = aberration length vanishes in symmetrical devices

Circuit elements calculated in Egs. (29)
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Chains of mode-equivalent T-junctions connected in parallel
: /
at the gap input terminals p P
Superscript: + circuit waves
- plasma waves

subscript: n = mode number

In space-periodic structure, Tn—junctions are identical and
chains are infinitly long or terminated by characteristic
mode impedance Zn: matched load or matched generator.
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Fig.ll Dispersion characteristics of slow wave directional coupler
' to radial modes.in a cylindrical plasma waveguide

thin line: dispersion of uncoupled radial pla sma modes

kon(m), taken from Fig.l

dashed line: Dispersion of uncoupled circuit wave, £/a= 0.7
0 £k () $n/f and its first space harmonics
pa k+ (w) + 2n/¢ , schematically

thick line: Floquet’s prepagation constant of the coupled
' system, schematically
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